Nuclear Energy

Nuclear Energy University Programs (NEUP) Fiscal Year (FY) 2016 Annual Planning Webinar

RC-03: Computational Methodologies to Support Design and Analysis of Sodium-cooled Fast Reactors

Thomas Sowinski
DOE-NE Office of Advanced Reactor Technologies

August 2015

ART Fast Reactor Methods Program Objectives

Nuclear Energy

- Develop and validate computational tools to support design and analysis of Sodium-cooled Fast Reactors
 - Neutronics / Thermal-Hydraulics / Structural Mechanics
 - Systems Analyses to Support Integral Plant Behavior
 - Reactor core, primary and intermediate coolant systems, decay heat removal systems, sodium accidents, containment response
 - Normal Operations and Postulated Accidents
- Raise technical readiness of SFR Concepts
 - Support commercial deployment

ART Fast Reactor Methods Program Overview

Sodium-cooled Fast Reactor neutronics analysis tools and methods

- Point and space-time kinetics
- Neutron transport
- Complex reactivity feedback mechanisms
 - Doppler, sodium density and void worth, fuel/clad axial expansion, core radial expansion etc.

Thermal-hydraulics analysis tools

- Systems analysis codes for whole-plant transient analyses and modeling inherent safety behavior
- Computational Fluid Dynamics (CFD) methods for component modeling with very low Prandtlnumber liquid metal flow and heat transfer

Thermo-structural analysis tools

- Core/fuel behavior and primary coolant boundary
- Containment response to sodium fires

ART Fast Reactor Methods Program Current Activities

Experimental Work

 Archiving past integral transient testing data from EBR-II, FFTF, and TREAT reactors to support code validation efforts

Code development activities

- Enhancement of SAS4A/SASSYS-1 systems analysis code to support accident analysis including ATWS events
- Incorporating sodium accident analysis capabilities of CONTAIN-LMR under MELCOR code to support containment design-basis assessments with respect to sodium fires

Strong consideration will be given to continued enhancement, validation & verification, and use in uncertainty analyses of the above codes and analysis capabilities

Specific FY16 Topic of Interest

Nuclear Energy

- In FY16, contributions to development and validation of reduced-order thermal stratification models is sought
 - In system analyses, the reactor plena are typically modeled as mixed 0-D volumes
 - Computational resource requirements make 3-D CFD tools prohibitively expensive within the context of system analyses
 - Therefore, the reduced-dimension and/or reduced-fidelity modeling approaches are needed to predict natural circulation flow rates in decay heat removal
- Development and assessment of thermal stratification models or proposals that provide the experimental data needed for validation of these models will be primarily considered

Summary

- Develop tools to support design and analysis of Sodiumcooled Fast Reactors to raise technical readiness and support commercial deployment
 - Emphasis on development of an integrated multi-physics system analysis tools and validation of their components/modules
- Strong consideration given to enhancement, verification and validation of state of the art codes and analysis capabilities
 - Development of advanced modules and/or conducting tests to provide validation data
- Specific topic of interest in FY16
 - Modeling mixing and thermal stratification in upper plenum of a pool type SFR with reduced-order methods for accurate prediction of natural circulation decay heat removal

Federal POC – Thomas Sowinski: <u>Thomas.Sowinski@nuclear.energy.gov</u> Technical POC – Tanju Sofu: tsofu@anl.gov